u^2+(4u/5)=5

Simple and best practice solution for u^2+(4u/5)=5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for u^2+(4u/5)=5 equation:



u^2+(4u/5)=5
We move all terms to the left:
u^2+(4u/5)-(5)=0
We add all the numbers together, and all the variables
u^2+(+4u/5)-5=0
We get rid of parentheses
u^2+4u/5-5=0
We multiply all the terms by the denominator
u^2*5+4u-5*5=0
We add all the numbers together, and all the variables
u^2*5+4u-25=0
Wy multiply elements
5u^2+4u-25=0
a = 5; b = 4; c = -25;
Δ = b2-4ac
Δ = 42-4·5·(-25)
Δ = 516
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{516}=\sqrt{4*129}=\sqrt{4}*\sqrt{129}=2\sqrt{129}$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{129}}{2*5}=\frac{-4-2\sqrt{129}}{10} $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{129}}{2*5}=\frac{-4+2\sqrt{129}}{10} $

See similar equations:

| 10t+2=8-2t | | x-18^2=10 | | -3(x+8)=5(x-1) | | 7(x)=105 | | 36=1.5^x | | -2(2y-4)-y=-3(y-3) | | 2a^2-50a^2=0 | | 40x+20x=100 | | 6n+19=-78 | | 8(x+2)+6(x+2)=6x-6 | | 7=1/2y+5 | | 5=7+1/2y | | 17(x-3)+(17x-5)=187 | | 6x+12=3x+8+2x | | 5=12/y+7 | | 12(6x-1)=144x | | 8x+7=9x-6 | | 6x-11=4x+19 | | .2x-40=x-8 | | 42=8x3=30 | | 2(2x-1)=37-9x | | 31/12-211/12=n | | n/3=73 | | 2y-8+12-6y=-3+9+12y | | 2(10x+5)=8x+22 | | 10x+5=8x+22 | | 5(2a-3)=6(2a+110 | | 9=u-9 | | 2x4=-8÷2 | | 5(2a-3)=6(2a | | 11-3x*75=-1 | | -135=-9(x+7) |

Equations solver categories